General Category > Trehelose in the NEWS

Trehalose Puts LIFE on Hold


JC Spencer:
Authored by John Bonner, and published in Chemistry World, 28 July 2005
Reproduced by permission from the Royal Society of Chemistry.

Researchers are discovering how an apparently ordinary disaccharide helps plants and animals survive extraordinary environments.

Salvatore Magaz� and colleagues at the University of Messina, Italy, have used a specialized spectroscopic technique to examine interactions between molecules of trehalose and water.

�The results could explain the unique biological properties of trehalose,� said the researchers, �which are not shared by other sugars with identical chemical formulae.�

Trehalose (C12H22O11) is a common component in the cells of many plant and animal roups. It protects desert species from damage during periods of drought and can romote survival in extreme heat and cold.

Several theories have been proposed as to why trehalose exerts far greater protective effects than other disaccharides like sucrose and maltose. These include suggestions that its special properties are due to a higher glass transition temperature or that it forms direct hydrogen bonds with lipids in cells, replacing similar bonds with water molecules.

Magaz� examined the bonds formed between water and all three disaccharides across a range of temperatures by collecting inelastic neutron scattering (INS) spectra. The authors describe how the beam of neutrons produced by a specialized spectrometer was used to measure vibration in the bonds formed between the sugars and water molecules.

The data show that trehalose creates a more crystalline formation with neighboring water molecules than that created between water molecules and the two similar disaccharides. �Trehalose modifies the structural and dynamic properties of water, forming a unique entity with water molecules which makes it better able to protect biological structures,� Magaz� explained.

It's a nice experiment,� said Jane Vanderkooi, professor of biochemistry and biophysics at the University of Pennsylvania, US. �They showed that a trehalosewater complex is more rigid than other sugar complexes. This rigidity would protect against high temperatures. But looking at the water itself, the water molecules next to trehalose are more flexible than bulk water. This would protect biological molecules against cold, because it would be harder to form ice.� John Bonner stated.


S Magaz� et al, J. Royal Soc. Interface, (DOI: 10.1098/rsif.2005.0059)


[0] Message Index

Go to full version